Solution of Second Order Differential Equation with Missing Independent Variable

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\map g {y, \dfrac {\d y} {\d x}, \dfrac {\d^2 y} {\d x^2} } = 0$ be a second order ordinary differential equation in which the independent variable $x$ is not explicitly present.

Then $g$ can be reduced to a first order ordinary differential equation, whose solution can be determined.


Proof

Consider the second order ordinary differential equation:

$(1): \quad \map g {y, \dfrac {\d y} {\d x}, \dfrac {\d^2 y} {\d x^2} } = 0$

Let a new dependent variable $p$ be introduced:

$y' = p$

Hence:

$y'' = \dfrac {\d p} {\d x} = \dfrac {\d p} {\d y} \dfrac {\d y} {\d x} = p \dfrac {\d p} {\d y}$

Then $(1)$ can be transformed into:

$(2): \quad \map g {y, p, p \dfrac {\d p} {\d y} = 0}$

which is a first order ODE.


If $(2)$ has a solution which can readily be found, it will be expressible in the form:

$(3): \quad \map g {x, p}$

which can then be expressed in the form:

$\map g {x, \dfrac {\d y} {\d x} }$

which is likewise subject to the techniques of solution of a first order ODE.


Hence such a second order ODE is reduced to the problem of solving two first order ODEs in succession.

$\blacksquare$


Sources