Square Root is Strictly Increasing

From ProofWiki
Jump to navigation Jump to search

Theorem

The positive square root function is strictly increasing, that is:

$\forall x, y \in \R_{>0}: x < y \implies \sqrt x < \sqrt y$


Proof

Let $x$ and $y$ be positive real numbers such that $x < y$.

Aiming for a contradiction, suppose $\sqrt x \ge \sqrt y$.

\(\text {(1)}: \quad\) \(\ds \sqrt x\) \(\ge\) \(\ds \sqrt y\)
\(\text {(2)}: \quad\) \(\ds \sqrt x\) \(\ge\) \(\ds \sqrt y\)
\(\ds x\) \(\ge\) \(\ds y\) Real Number Axiom $\R \text O2$: Usual Ordering is Compatible with Multiplication: $(1) \times (2)$

Thus a contradiction is created.

Therefore:

$\forall x, y \in \R_{>0}: x < y \implies \sqrt x < \sqrt y$

$\blacksquare$