Square of Cube Number is Cube/Proof 1

From ProofWiki
Jump to navigation Jump to search


Let $a \in \N$ be a natural number.

Let $a$ be a cube number.

Then $a^2$ is also a cube number.

In the words of Euclid:

If a cube number by multiplying itself make some number the product will be cube.

(The Elements: Book $\text{IX}$: Proposition $3$)


By the definition of cube number:

$\exists k \in \N: k^3 = a$


\(\ds a^2\) \(=\) \(\ds \paren {k^3}^2\)
\(\ds \) \(=\) \(\ds k^6\)
\(\ds \) \(=\) \(\ds \paren {k^2}^3\)


$\exists r = k^2 \in \N: a = r^3$

Hence the result by definition of cube number.