Standard Generator Matrix for Linear Code/Examples/(3, 2) code in Z2

From ProofWiki
Jump to navigation Jump to search

Example of Standard Generator Matrix for Linear Code

Let $G$ be the standard generator matrix:

$G := \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$


$G$ generates the linear code $C$:

$C = \set {000, 101, 011, 110}$


The minimum distance of $C$ is $2$, so $C$ detects $1$ transmission error and corrects none.


Proof

Multiplying $G$ by the $4$ vectors $00, 01, 10, 11$ in turn gives:


\(\ds \begin{pmatrix} 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}\) \(=\) \(\ds \begin{pmatrix} 0 \times 1 + 0 \times 0 & 0 \times 0 + 0 \times 1 & 0 \times 1 + 0 \times 1 \end{pmatrix}\)
\(\ds \) \(=\) \(\ds \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}\)


\(\ds \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}\) \(=\) \(\ds \begin{pmatrix} 0 \times 1 + 1 \times 0 & 0 \times 0 + 1 \times 1 & 0 \times 1 + 1 \times 1 \end{pmatrix}\)
\(\ds \) \(=\) \(\ds \begin{pmatrix} 0 & 1 & 1 \end{pmatrix}\)


\(\ds \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}\) \(=\) \(\ds \begin{pmatrix} 1 \times 1 + 0 \times 0 & 1 \times 0 + 0 \times 1 & 1 \times 1 + 0 \times 1 \end{pmatrix}\)
\(\ds \) \(=\) \(\ds \begin{pmatrix} 1 & 0 & 1 \end{pmatrix}\)


\(\ds \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}\) \(=\) \(\ds \begin{pmatrix} 1 \times 1 + 1 \times 0 & 1 \times 0 + 1 \times 1 & 1 \times 1 + 1 \times 1 \end{pmatrix}\)
\(\ds \) \(=\) \(\ds \begin{pmatrix} 1 & 1 & 0 \end{pmatrix}\)


all arithmetic being modulo $2$.


The rest of the result follows by inspection.

$\blacksquare$


Sources