Stirling's Formula/Proof 2/Lemma 1

From ProofWiki
Jump to navigation Jump to search

Lemma

Let $\map f x$ be the real function defined on the open interval $\openint {-1} 1$ as:

$\map f x := \dfrac 1 {2 x} \map \ln {\dfrac {1 + x} {1 - x} } - 1$


Then:

$\ds \map f x = \sum_{k \mathop = 1}^\infty \dfrac {x^{2 n} } {2 n + 1}$


Proof

\(\ds \map f x\) \(:=\) \(\ds \frac 1 {2 x} \map \ln {\frac {1 + x} {1 - x} } - 1\) for $\size x < 1$
\(\ds \) \(=\) \(\ds \frac 1 {2 x} \paren {\map \ln {1 + x} - \map \ln {1 - x} } - 1\) Difference of Logarithms
\(\ds \) \(=\) \(\ds \frac 1 {2 x} \paren {\sum_{k \mathop = 1}^\infty \paren {\paren {-1}^{k - 1} \frac {x^k} k} - \sum_{k \mathop = 1}^\infty \paren {-\frac {x^k} k} } - 1\) Power Series Expansion for $\map \ln {1 + x}$
\(\ds \) \(=\) \(\ds \sum_{k \mathop = 1}^\infty \frac {x^{2 n} } {2 n + 1}\) simplifying

$\blacksquare$


Sources