Strictly Monotone Mapping is Monotone

From ProofWiki
Jump to navigation Jump to search


A mapping that is strictly monotone is a monotone mapping.


If $\phi$ is strictly monotone, then it is either strictly increasing or strictly decreasing.

If $\phi$ is strictly increasing, then by Strictly Increasing Mapping is Increasing, $\phi$ is increasing.

If $\phi$ is strictly decreasing, then by Strictly Decreasing Mapping is Decreasing, $\phi$ is decreasing.

Thus $\phi$ is monotone by definition.