Subset is Right Compatible with Ordinal Multiplication

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x, y, z$ be ordinals.


Then:

$x \le y \implies \paren {x \cdot z} \le \paren {y \cdot z}$


Proof

The proof shall proceed by Transfinite Induction on $z$.


Basis for the Induction

By definition of ordinal multiplication:

$x \cdot 0 = 0$

so the statement simply reduces to:

$0 \le 0$

This proves the basis for the induction.


Induction Step

\(\ds x\) \(\le\) \(\ds y\)
\(\ds \leadsto \ \ \) \(\ds x \cdot z\) \(\le\) \(\ds y \cdot z\) Inductive Hypothesis
\(\ds \leadsto \ \ \) \(\ds \paren {x \cdot z} + x\) \(\le\) \(\ds \paren {y \cdot z} + y\) Membership is Left Compatible with Ordinal Addition and Subset is Right Compatible with Ordinal Addition
\(\ds \leadsto \ \ \) \(\ds x \cdot z^+\) \(\le\) \(\ds y \cdot z^+\) Definition of Ordinal Multiplication

This proves the induction step.


Limit Case

\(\ds x\) \(\le\) \(\ds y\)
\(\ds \leadsto \ \ \) \(\ds \forall w \in z: \, \) \(\ds x \cdot w\) \(\le\) \(\ds y \cdot w\) Inductive Hypothesis
\(\ds \leadsto \ \ \) \(\ds \bigcup_{w \mathop \in z} \paren {x \cdot w}\) \(\le\) \(\ds \bigcup_{w \mathop \in z} \paren {y \cdot w}\) Indexed Union Subset
\(\ds \leadsto \ \ \) \(\ds x \cdot z\) \(\le\) \(\ds y \cdot z\) Definition of Ordinal Multiplication

This proves the limit case.

$\blacksquare$


Also see


Sources