Subset of Codomain is Superset of Image of Preimage/Proof 3

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $f: S \to T$ be a mapping.


Then:

$B \subseteq T \implies \paren {f \circ f^{-1} } \sqbrk B \subseteq B$

where:

$f \sqbrk B$ denotes the image of $B$ under $f$
$f^{-1}$ denotes the inverse of $f$
$f \circ f^{-1}$ denotes composition of $f$ and $f^{-1}$.


This can be expressed in the language and notation of direct image mappings and inverse image mappings as:

$\forall B \in \powerset T: \map {\paren {f^\to \circ f^\gets} } B \subseteq B$


Proof

Let $B \subseteq T$.

Then:

\(\ds y\) \(\in\) \(\ds \paren {f \circ f^{-1} } \sqbrk B\)
\(\ds \leadsto \ \ \) \(\ds y\) \(\in\) \(\ds f \sqbrk {f^{-1} \sqbrk B}\) Definition of Composition of Mappings
\(\ds \leadsto \ \ \) \(\ds \exists x \in f^{-1} \sqbrk B: \, \) \(\ds \map f x\) \(=\) \(\ds y\) Definition of Image of Subset under Mapping
\(\ds \leadsto \ \ \) \(\ds y\) \(\in\) \(\ds B\) Definition of Preimage of Subset under Mapping

So by definition of subset:

$B \subseteq T \implies \paren {f \circ f^{-1} } \sqbrk B \subseteq B$

$\blacksquare$


Sources