# Subset of Ordinals has Minimal Element

Jump to navigation
Jump to search

## Theorem

Let $A$ be an ordinal (we shall allow $A$ to be a proper class).

Let $B$ be a nonempty subset of $A$.

Then $B$ has an $\Epsilon$-minimal element.

That is:

- $\exists x \in B: B \cap x = \varnothing$

## Proof

We have that $\Epsilon$ creates a well-ordering on any ordinal.

Also, the initial segments of $x$ are sets.

Therefore from Proper Well-Ordering Determines Smallest Elements:

- $B$ has an $\Epsilon$-minimal element.

## Sources

- 1971: Gaisi Takeuti and Wilson M. Zaring:
*Introduction to Axiomatic Set Theory*: $\S 7.5$