Subsets Greater Than and Less Than Identity of Ordered Abelian Group are Isomorphic Ordered Semigroups
Theorem
Let $\struct {G, \circ, \preccurlyeq}$ be an ordered abelian group whose identity element is $e$.
Let $G^+$ and $G^-$ denote the subsets of $G$ defined as:
- $G^+ = \set {x \in G: e \preccurlyeq x}$
- $G^- = \set {x \in G: x \preccurlyeq e}$
Then $\struct {G^+, \circ, \preccurlyeq}$ and $\struct {G^-, \circ, \succcurlyeq}$ are subsemigroups of $G$ such that the inversion mapping $\iota: G \to G$ defined as:
- $\forall g \in G: \map \iota g = g^{-1}$
is:
- an isomorphism from $\struct {G^+, \circ, \preccurlyeq}$ to $\struct {G^-, \circ, \succcurlyeq}$
and:
- an isomorphism from $\struct {G^-, \circ, \preccurlyeq}$ to $\struct {G^+, \circ, \succcurlyeq}$
Proof
Let $x, y \in G^+$ be arbitrary.
Then:
\(\ds e\) | \(\preccurlyeq\) | \(\ds x\) | Definition of $G^+$ | |||||||||||
\(\ds e\) | \(\preccurlyeq\) | \(\ds y\) | Definition of $G^+$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds e \circ y\) | \(\preccurlyeq\) | \(\ds x \circ y\) | Definition of Ordered Group as $\preccurlyeq$ is compatible with $\circ$ | ||||||||||
\(\ds x \circ e\) | \(\preccurlyeq\) | \(\ds x \circ y\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds e\) | \(\preccurlyeq\) | \(\ds x \circ y\) | $\preccurlyeq$ is an ordering and therefore transitive | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds x \circ y\) | \(\in\) | \(\ds G^+\) | Definition of $G^+$ |
So by the Subsemigroup Closure Test $\struct {G^+, \circ}$ is a subsemigroup of $\struct {G, \circ}$.
$\Box$
Let $x, y \in G^-$ be arbitrary.
Then:
\(\ds x\) | \(\preccurlyeq\) | \(\ds e\) | Definition of $G^-$ | |||||||||||
\(\ds y\) | \(\preccurlyeq\) | \(\ds e\) | Definition of $G^-$ | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds x \circ y\) | \(\preccurlyeq\) | \(\ds x \circ e\) | Definition of Ordered Group as $\preccurlyeq$ is compatible with $\circ$ | ||||||||||
\(\ds x \circ y\) | \(\preccurlyeq\) | \(\ds e \circ y\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds x \circ y\) | \(\preccurlyeq\) | \(\ds e\) | $\preccurlyeq$ is an ordering and therefore transitive | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds x \circ y\) | \(\in\) | \(\ds G^-\) | Definition of $G^-$ |
So by the Subsemigroup Closure Test $\struct {G^-, \circ}$ is a subsemigroup of $\struct {G, \circ}$.
$\Box$
Then we establish that:
\(\ds \forall x, y \in G: \, \) | \(\ds \map \iota {x \circ y}\) | \(=\) | \(\ds \paren {x \circ y}^{-1}\) | Definition of Inversion Mapping | ||||||||||
\(\ds \) | \(=\) | \(\ds y^{-1} \circ x^{-1}\) | Inverse of Group Product | |||||||||||
\(\ds \) | \(=\) | \(\ds x^{-1} \circ y^{-1}\) | Definition of Abelian Group | |||||||||||
\(\ds \) | \(=\) | \(\ds \map \iota x \circ \map \iota y\) | Definition of Inversion Mapping |
demonstrating that for all $\iota$ has the morphism property over the whole of $G$.
Then we note that:
\(\ds \forall x \in G^+: \, \) | \(\ds e\) | \(\preccurlyeq\) | \(\ds x\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds e\) | \(\succcurlyeq\) | \(\ds x^{-1}\) | Inversion Mapping Reverses Ordering in Ordered Group: Corollary | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds e\) | \(\succcurlyeq\) | \(\ds \map \iota x\) | Definition of Inversion Mapping | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map \iota x\) | \(\in\) | \(\ds G^-\) | Definition of $G^-$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \iota \sqbrk {G^+}\) | \(=\) | \(\ds G^-\) | Definition of Image of Subset under Mapping |
Similarly:
\(\ds \forall x \in G^-: \, \) | \(\ds e\) | \(\succcurlyeq\) | \(\ds x\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds e\) | \(\preccurlyeq\) | \(\ds x^{-1}\) | Inversion Mapping Reverses Ordering in Ordered Group: Corollary | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds e\) | \(\preccurlyeq\) | \(\ds \map \iota x\) | Definition of Inversion Mapping | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map \iota x\) | \(\in\) | \(\ds G^+\) | Definition of $G^+$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \iota \sqbrk {G^-}\) | \(=\) | \(\ds G^+\) | Definition of Image of Subset under Mapping |
Then we note that:
\(\ds \forall x, y \in G: \, \) | \(\ds \map \iota x\) | \(=\) | \(\ds \map \iota y\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds x^{-1}\) | \(=\) | \(\ds y^{-1}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds x\) | \(=\) | \(\ds y\) | Group Axiom $\text G 3$: Existence of Inverse Element |
demonstrating that $\iota$ is an injection.
Let $x \in G^+$.
Then a priori:
- $\exists x^{-1} \in G^-: \map \iota {x^{-1} } = x$
Similarly, let $x \in G^-$.
Then a priori:
- $\exists x^{-1} \in G^+: \map \iota {x^{-1} } = x$
So $\iota: G^+ \to G^-$ and $\iota: G^- \to G^+$ are both surjections.
Hence $\iota: G^+ \to G^-$ and $\iota: G^- \to G^+$ are both bijections by definition.
Thus we have that:
- $\iota: \struct {G^+, \circ} \to \struct {G^-, \circ}$ is a semigroup isomorphism
and
- $\iota: \struct {G^-, \circ} \to \struct {G^+, \circ}$ is a semigroup isomorphism.
$\Box$
Let $x, y \in G^+$ be arbitrary, such that $x \preccurlyeq y$.
We have:
\(\ds x\) | \(\preccurlyeq\) | \(\ds y\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds x^{-1}\) | \(\succcurlyeq\) | \(\ds y^{-1}\) | Inversion Mapping Reverses Ordering in Ordered Group | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map \iota x\) | \(\succcurlyeq\) | \(\ds \map \iota y\) | Definition of Inversion Mapping |
Let $x, y \in G^-$ be arbitrary, such that $x \succcurlyeq y$.
We have:
\(\ds x\) | \(\succcurlyeq\) | \(\ds y\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds x^{-1}\) | \(\preccurlyeq\) | \(\ds y^{-1}\) | Inversion Mapping Reverses Ordering in Ordered Group | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map \iota x\) | \(\preccurlyeq\) | \(\ds \map \iota y\) | Definition of Inversion Mapping |
Thus we have demonstrated that $\iota: \struct {G^+, \preccurlyeq} \to \struct {G^-, \succcurlyeq}$ and $\iota: \struct {G^-, \succcurlyeq} \to \struct {G^+, \preccurlyeq}$ are order isomorphisms.
So we have that:
Thus we have that:
- $\iota: \struct {G^+, \circ} \to \struct {G^-, \circ}$ is a semigroup isomorphism
- $\iota: \struct {G^+, \preccurlyeq} \to \struct {G^-, \succcurlyeq}$ is an order isomorphism
and so:
- $\iota: \struct {G^+, \circ, \preccurlyeq} \to \struct {G^-, \circ, \succcurlyeq}$ is an ordered semigroup isomorphism
and
- $\iota: \struct {G^-, \circ} \to \struct {G^+, \circ}$ is a semigroup isomorphism
- $\iota: \struct {G^-, \succcurlyeq} \to \struct {G^+, \preccurlyeq}$ is an order isomorphism
and so:
- $\iota: \struct {G^-, \circ, \succcurlyeq} \to \struct {G^+, \circ, \preccurlyeq}$ is an ordered semigroup isomorphism
$\blacksquare$
Sources
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text {III}$: The Natural Numbers: $\S 15$: Ordered Semigroups: Exercise $15.4$