Substitution Rule for Matrices
Jump to navigation
Jump to search
Theorem
Let $\mathbf A$ be a square matrix of order $n$.
Then:
- $(1): \quad \ds \sum_{j \mathop = 1}^n \delta_{i j} a_{j k} = a_{i k}$
- $(2): \quad \ds \sum_{j \mathop = 1}^n \delta_{i j} a_{k j} = a_{k i}$
where:
- $\delta_{i j}$ is the Kronecker delta
- $a_{j k}$ is element $\tuple {j, k}$ of $\mathbf A$.
Using Einstein Summation Convention
The Substitution Rule for Matrices can be expressed using the Einstein summation convention as:
- $(1): \quad \delta_{i j} a_{j k} = a_{i k}$
- $(2): \quad \delta_{i j} a_{k j} = a_{k i}$
where:
- $\delta_{i j}$ is the Kronecker delta
- $a_{j k}$ is element $\tuple {j, k}$ of $\mathbf A$.
The index which appears twice in these expressions is the element $j$, which is the one summated over.
Proof
By definition of Kronecker delta:
- $\delta_{i j} = \begin {cases} 1 & : i = j \\ 0 & : i \ne j \end {cases}$
Thus:
- $\delta_{i j} a_{j k} = \begin {cases} a_{i k} & : i = j \\ 0 & : i \ne j \end {cases}$
and:
- $\delta_{i j} a_{k j} = \begin {cases} a_{k i} & : i = j \\ 0 & : i \ne j \end {cases}$
from which the result follows.
$\blacksquare$
Sources
- 1980: A.J.M. Spencer: Continuum Mechanics ... (previous) ... (next): $2.1$: Matrices: $(2.6)$