Sum Rule for Complex Derivatives
Jump to navigation
Jump to search
Theorem
Let $\map f z, \map j z, \map k z$ be single-valued continuous complex functions in a domain $D \subseteq \C$, where $D$ is open.
Let $f$, $j$, and $k$ be complex-differentiable at all points in $D$.
Let $\map f z = \map j z + \map k z$.
Then:
- $\forall z \in D: \map {f'} z = \map {j'} z + \map {k'} z$
Proof
Let $z_0 \in D$ be a point in $D$.
\(\ds \map {f'} {z_0}\) | \(=\) | \(\ds \lim_{h \mathop \to 0} \frac {\map f {z_0 + h} - \map f {z_0} } h\) | Definition of Derivative of Complex Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{h \mathop \to 0} \frac {\paren {\map j {z_0 + h} + \map k {z_0 + h} } - \paren {\map j {z_0} +\map k {z_0} } } h\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{h \mathop \to 0} \frac {\map j {z_0 + h} + \map k {z_0 + h} - \map j {z_0} - \map k {z_0} } h\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{h \mathop \to 0} \frac {\paren {\map j {z_0 + h} - \map j {z_0} } + \paren {\map k {z_0 + h} - \map k {z_0} } } h\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{h \mathop \to 0} \paren {\frac {\map j {z_0 + h} - \map j {z_0} } h + \frac {\map k {z_0 + h} - \map k {z_0} } h}\) | Complex Multiplication Distributes over Addition | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{h \mathop \to 0} \frac {\map j {z_0 + h} - \map j {z_0} } h + \lim_{h \mathop \to 0} \frac {\map k {z_0 + h} - \map k {z_0} } h\) | Sum Rule for Limits of Complex Functions | |||||||||||
\(\ds \) | \(=\) | \(\ds \map {j'} {z_0} + \map {k'} {z_0}\) | Definition of Derivative of Complex Function | |||||||||||
\(\ds \leadsto \ \ \) | \(\, \ds \forall z \in D: \, \) | \(\ds \map {f'} z\) | \(=\) | \(\ds \map {j'} z + \map {k'} z\) | Definition of Derivative of Complex Function |
$\blacksquare$