Sum of Arithmetic Sequence/Examples/Sum of j from m to n/Proof 1
Jump to navigation
Jump to search
Example of Sum of Arithmetic Sequence
\(\ds \sum_{j \mathop = m}^n j\) | \(=\) | \(\ds m \paren {n - m + 1} + \frac 1 2 \paren {n - m} \paren {n - m + 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {n \paren {n + 1} } 2 - \frac {\paren {m - 1} m} 2\) |
Proof
\(\ds \sum_{j \mathop = m}^n j\) | \(=\) | \(\ds \sum_{j \mathop = 0}^{n - m} \paren {m + j}\) | Translation of Index Variable of Summation | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {n - m + 1} \paren {m + \frac {n - m} 2}\) | Sum of Arithmetic Sequence | |||||||||||
\(\ds \) | \(=\) | \(\ds m \paren {n - m + 1} + \frac 1 2 \paren {n - m} \paren {n - m + 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds m n - m^2 + m + \frac 1 2 \paren {n^2 - m n + n - m n + m^2 - m}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {m + n^2 + n - m^2 + m} 2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {n \paren {n + 1} } 2 - \frac {m \paren {m - 1} } 2\) |
$\blacksquare$