Sum of Big-O Estimates/Sequences

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\sequence {a_n},\sequence {b_n},\sequence {c_n},\sequence {d_n}$ be sequences of real or complex numbers.

Let:

$a_n = \map \OO {b_n}$
$c_n = \map \OO {d_n}$

where $\OO$ denotes big-$\OO$ notation.


Then:

$a_n + c_n = \map \OO {\size {b_n} + \size {d_n} }$


Proof

Since:

$a_n = \map \OO {b_n}$

there exists a positive real number $C_1$ and natural number $N_1$ such that:

$\size {a_n} \le C_1 \size {b_n}$

for all $n \ge N_1$.

Similarly, since:

$c_n = \map \OO {d_n}$

there exists a positive real number $C_2$ and natural number $N_2$ such that:

$\size {c_n} \le C_2 \size {d_n}$

for all $n \ge N_2$.

Let:

$N = \max \set {N_1, N_2}$

Then, for $n \ge N$ we have:

\(\ds \size {a_n + c_n}\) \(\le\) \(\ds \size {a_n} + \size {c_n}\) Triangle Inequality
\(\ds \) \(=\) \(\ds C_1 \size {b_n} + \size {c_n}\) since $n \ge N_1$
\(\ds \) \(=\) \(\ds C_1 \size {b_n} + C_2 \size {d_n}\) since $n \ge N_2$

Let:

$C = \max \set {C_1, C_2}$

Then:

\(\ds C_1 \size {b_n} + C_2 \size {d_n}\) \(=\) \(\ds C \size {b_n} + C \size {d_n}\)
\(\ds \) \(=\) \(\ds C \paren {\size {b_n} + \size {d_n} }\)
\(\ds \) \(=\) \(\ds C \size {\size {b_n} + \size {d_n} }\)

So:

$\size {a_n + c_n} \le C \size {\size {b_n} + \size {d_n} }$

for $n \ge N$.

So:

$a_n + c_n = \map \OO {\size {b_n} + \size {d_n} }$

$\blacksquare$