Sum of Consecutive Odd Index Fibonacci Numbers

From ProofWiki
Jump to navigation Jump to search

Theorem

\(\ds F_{2 k - 1} + F_{2 k + 1}\) \(=\) \(\ds \phi^{2 k} + \phi^{-2 k}\)

where:

$F_k$ denotes the $k$th Fibonacci number
$\phi$ denotes the golden mean.


Proof

\(\ds F_{2 k - 1} + F_{2 k + 1}\) \(=\) \(\ds \paren {\phi^{2 k} - F_{2 k} \phi } + \paren {\phi^{2 k + 2} - F_{2 k + 2} \phi }\) Fibonacci Number by Golden Mean plus Fibonacci Number of Index One Less
\(\ds \) \(=\) \(\ds \phi^{2 k} + F_{-2 k} \phi + \paren {\phi^{2 k + 2} - F_{2 k + 2} \phi }\) Fibonacci Number with Negative Index
\(\ds \) \(=\) \(\ds \phi^{2 k} + F_{-2 k} \phi + \paren {\paren {F_{2 k + 2} \phi + F_{2 k + 1} } - F_{2 k + 2} \phi }\) Fibonacci Number by Golden Mean plus Fibonacci Number of Index One Less
\(\ds \) \(=\) \(\ds \phi^{2 k} + \paren {F_{-2 k} \phi + F_{-2 k - 1} }\) Fibonacci Number with Negative Index
\(\ds \) \(=\) \(\ds \phi^{2 k} + \phi^{-2 k}\) Fibonacci Number by Golden Mean plus Fibonacci Number of Index One Less

$\blacksquare$