Sum of Cosines of Four Times Angles of Triangle

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\triangle ABC$ be a triangle.

Then:

$\cos 4 A + \cos 4 B + \cos 4 C = 4 \cos 2 A \cos 2 B \cos 2 C - 1$


Proof

First we note that:

\(\ds A + B + C\) \(=\) \(\ds 180 \degrees\) Sum of Angles of Triangle equals Two Right Angles
\(\ds \leadsto \ \ \) \(\ds 2 A + 2 B + 2 C\) \(=\) \(\ds 360 \degrees\)
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds 2 A + 2 B\) \(=\) \(\ds 360 \degrees - 2 C\)

That is, $2 C$ is the conjugate of $2 A + 2 B$.


Then:

\(\ds \cos 4 A + \cos 4 B + \cos 4 C\) \(=\) \(\ds 2 \map \cos {2 A + 2 B} \map \cos {2 A - 2 B} + \cos 4 C\) Cosine plus Cosine
\(\ds \) \(=\) \(\ds 2 \map \cos {360 \degrees - 2 C} \map \cos {2 A - 2 B} + \cos 4 C\) from $(1)$
\(\ds \) \(=\) \(\ds 2 \cos 2 C \map \cos {2 A - 2 B} + \cos 4 C\) Cosine of Conjugate Angle
\(\ds \) \(=\) \(\ds 2 \cos 2 C \paren {\cos 2 A \cos 2 B + \sin 2 A \sin 2 B} + \cos 4 C\) Cosine of Difference
\(\ds \) \(=\) \(\ds 2 \cos 2 C \paren {\cos 2 A \cos 2 B + \sin 2 A \sin 2 B} + \paren {2 \cos^2 2 C - 1}\) Double Angle Formula for Cosine: Corollary $1$
\(\ds \) \(=\) \(\ds 2 \cos 2 A \cos 2 B \cos 2 C + 2 \paren {\sin 2 A \sin 2 B + \cos 2 C} \cos 2 C - 1\) multiplying out and rearranging
\(\ds \) \(=\) \(\ds 2 \cos 2 A \cos 2 B \cos 2 C + 2 \paren {\sin 2 A \sin 2 B + \map \cos {360 \degrees - \paren {2 A + 2 B} } } \cos 2 C - 1\) from $(1)$
\(\ds \) \(=\) \(\ds 2 \cos 2 A \cos 2 B \cos 2 C + 2 \paren {\sin 2 A \sin 2 B + \map \cos {2 A + 2 B} } \cos 2 C - 1\) Cosine of Conjugate Angle
\(\ds \) \(=\) \(\ds 2 \cos 2 A \cos 2 B \cos 2 C + 2 \paren {\sin 2 A \sin 2 B + \paren {\cos 2 A \cos 2 B - \sin 2 A \sin 2 B} } \cos C - 1\) Cosine of Sum
\(\ds \) \(=\) \(\ds 2 \cos 2 A \cos 2 B \cos 2 C + 2 \paren {\sin 2 A \sin 2 B - \sin 2 A \sin 2 B} \cos 2 C + 2 \cos 2 A \cos 2 B \cos 2 C - 1\) multiplying out
\(\ds \) \(=\) \(\ds 4 \cos 2 A \cos 2 B \cos 2 C - 1\) simplifying

$\blacksquare$


Also presented as

This result can also be presented as:

$\cos 4 A + \cos 4 B + \cos 4 C + 1 = 4 \cos 2 A \cos 2 B \cos 2 C$


Sources