Sum of Geometric Sequence/Proof 1
Jump to navigation
Jump to search
Theorem
Let $x$ be an element of one of the standard number fields: $\Q, \R, \C$ such that $x \ne 1$.
Let $n \in \N_{>0}$.
Then:
- $\ds \sum_{j \mathop = 0}^{n - 1} x^j = \frac {x^n - 1} {x - 1}$
Proof
For all $n \in \N_{>0}$, let $\map P n$ be the proposition:
- $\ds \sum_{j \mathop = 0}^{n - 1} x^j = \frac {x^n - 1} {x - 1}$
Basis for the Induction
$\map P 1$ is the case:
\(\ds \dfrac {x^1 - 1} {x - 1}\) | \(=\) | \(\ds 1\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 2^0\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{j \mathop = 0}^{1 - 1} x^j\) |
so $\map P 1$ holds.
This is our basis for the induction.
Induction Hypothesis
Now we need to show that, if $\map P k$ is true, where $k \ge 1$, then it logically follows that $\map P {k + 1}$ is true.
So this is our induction hypothesis:
- $\ds \sum_{j \mathop = 0}^{k - 1} x^j = \frac {x^k - 1} {x - 1}$
Then we need to show:
- $\ds \sum_{j \mathop = 0}^k x^j = \frac {x^{k + 1} - 1} {x - 1}$
Induction Step
This is our induction step:
\(\ds \sum_{j \mathop = 0}^k x^j\) | \(=\) | \(\ds \sum_{j \mathop = 0}^{k - 1} x^j + x^k\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {x^k - 1} {x - 1} + x^k\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {x^k - 1 + \paren {x - 1} x^k} {x - 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {x^k - 1 + x^{k + 1} - x^k} {x - 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {x^{k + 1} - 1} {x - 1}\) |
So $\map P k \implies \map P {k + 1}$ and the result follows by the Principle of Mathematical Induction.
Therefore:
- $\ds \forall n \in \N_{>0}: \sum_{j \mathop = 0}^{n - 1} x^j = \frac {x^n - 1} {x - 1}$
$\blacksquare$
Sources
- 1971: George E. Andrews: Number Theory ... (previous) ... (next): $\text {1-1}$ Principle of Mathematical Induction: Theorem $\text {1-2}$
- 1977: K.G. Binmore: Mathematical Analysis: A Straightforward Approach ... (previous) ... (next): $\S 3$: Natural Numbers: Exercise $\S 3.11 \ (2)$