# Sum of Indexed Suprema

Jump to navigation
Jump to search

## Theorem

Let $\sequence {a_i}_{i \mathop \in I}$ be a family of elements of the real numbers $\R$ indexed by $I$.

Let $\sequence {b_j}_{j \mathop \in J}$ be a family of elements of the real numbers $\R$ indexed by $J$.

Let $\map R i$ and $\map S j$ be propositional functions of $i \in I$, $j \in J$.

Let $\ds \sup_{\map R i} a_i$ and $\ds \sup_{\map S j} b_j$ be the indexed suprema on $\sequence {a_i}$ and $\sequence {b_j}$ respectively.

Then:

- $\ds \paren {\sup_{\map R i} a_i} + \paren {\sup_{\map S j} b_j} = \sup_{\map R i} \paren {\sup_{\map S j} \paren {a_i + b_j} }$

## Proof

\(\ds \paren {\sup_{\map R i} a_i} + \paren {\sup_{\map S j} b_j}\) | \(=\) | \(\ds \sup_{\map R i} \paren {a_i + \sup_{\map S j} b_j}\) | Sum with Maximum is Maximum of Sum | |||||||||||

\(\ds \) | \(=\) | \(\ds \sup_{\map R i} \paren {\sup_{\map S j} \paren {a_i + b_j} }\) | Sum with Maximum is Maximum of Sum |

$\blacksquare$

## Sources

- 1997: Donald E. Knuth:
*The Art of Computer Programming: Volume 1: Fundamental Algorithms*(3rd ed.) ... (previous) ... (next): $\S 1.2.3$: Sums and Products: Exercise $35$