Sum of Indices of Falling Factorial

From ProofWiki
Jump to navigation Jump to search

Theorem

$x^{\underline {m + n} } = x^{\underline m} \paren {x - m}^{\underline n}$

where $x^{\underline m}$ denotes $x$ to the $m$ falling.


Proof

\(\ds x^{\underline {m + n} }\) \(=\) \(\ds \prod_{j \mathop = 0}^{m + n - 1} \paren {x - j}\) Definition of Falling Factorial
\(\ds \) \(=\) \(\ds \prod_{j \mathop = 0}^{m - 1} \paren {x - j} \prod_{j \mathop = m}^{m + n - 1} \paren {x - j}\)
\(\ds \) \(=\) \(\ds \prod_{j \mathop = 0}^{m - 1} \paren {x - j} \prod_{j \mathop = 0}^{n - 1} \paren {x - {\paren {m + j} } }\) Translation of Index Variable of Product
\(\ds \) \(=\) \(\ds \prod_{j \mathop = 0}^{m - 1} \paren {x - j} \prod_{j \mathop = 0}^{n - 1} \paren {\paren {x - m} - j}\)
\(\ds \) \(=\) \(\ds x^{\underline m} \paren {x - m}^{\underline n}\) Definition of Falling Factorial

$\blacksquare$


Sources