Sum of Indices of Rising Factorial

From ProofWiki
Jump to navigation Jump to search

Theorem

$x^{\overline {m + n} } = x^{\overline m} \paren {x + m}^{\overline n}$

where $x^{\overline m}$ denotes $x$ to the $m$ rising.


Proof

\(\ds x^{\overline {m + n} }\) \(=\) \(\ds \prod_{j \mathop = 0}^{m + n - 1} \paren {x + j}\) Definition of Rising Factorial
\(\ds \) \(=\) \(\ds \prod_{j \mathop = 0}^{m - 1} \paren {x + j} \prod_{j \mathop = m}^{m + n - 1} \paren {x + j}\)
\(\ds \) \(=\) \(\ds \prod_{j \mathop = 0}^{m - 1} \paren {x + j} \prod_{j \mathop = 0}^{n - 1} \paren {x + \paren {m + j} }\) Translation of Index Variable of Product
\(\ds \) \(=\) \(\ds x^{\overline m} \paren {x + m}^{\overline n}\) Definition of Rising Factorial

$\blacksquare$


Sources