Sum of Reciprocals of Powers as Euler Product/Corollary 2/Examples/Zeta^2(2) over Zeta(4)

From ProofWiki
Jump to navigation Jump to search

Example of Use of Sum of Reciprocals of Powers as Euler Product/Corollary 2

$\ds \prod_{\text {$p$ prime} } \paren {\frac {1 + p^{-2} } {1 - p^{-2} } } = \dfrac 5 2$

where the infinite product runs over the prime numbers.


Proof

\(\ds \prod_{\text {$p$ prime} } \paren {\frac {1 + p^{-s} } {1 - p^{-s} } }\) \(=\) \(\ds \dfrac {\paren {\map \zeta s}^2} {\map \zeta {2s } }\) Sum of Reciprocals of Powers as Euler Product/Corollary 2
\(\ds \leadsto \ \ \) \(\ds \prod_{\text {$p$ prime} } \paren {\frac {1 + p^{-2} } {1 - p^{-2} } }\) \(=\) \(\ds \dfrac {\paren {\map \zeta 2}^2} {\map \zeta 4}\)
\(\ds \) \(=\) \(\ds \dfrac {\paren {\dfrac {\pi^2 } 6 }^2} {\dfrac {\pi^4} {90 } }\) Basel Problem and Riemann Zeta Function of 4
\(\ds \) \(=\) \(\ds \dfrac {\paren {\dfrac {\pi^4} {36} } } {\dfrac {\pi^4} {90} }\)
\(\ds \) \(=\) \(\ds \dfrac {90} {36}\)
\(\ds \) \(=\) \(\ds \dfrac 5 2\)

$\blacksquare$