Sum of Reciprocals of Squares of Odd Integers/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

\(\ds \sum_{n \mathop = 1}^\infty \frac 1 {\paren {2 n - 1}^2}\) \(=\) \(\ds 1 + \dfrac 1 {3^2} + \dfrac 1 {5^2} + \dfrac 1 {7^2} + \dfrac 1 {9^2} + \cdots\)
\(\ds \) \(=\) \(\ds \dfrac {\pi^2} 8\)


Proof

Let $n$ be a positive integer.

\(\ds \int_0^1 \frac {x^{2 n + 1} } {\sqrt {1 - x^2} } \rd x\) \(=\) \(\ds \int_0^{\pi / 2} \sin^{2 n + 1} x \rd x\) substituting $x \to \sin x$
\(\text {(1)}: \quad\) \(\ds \) \(=\) \(\ds \frac {2^{2 n} \paren {n!}^2} {\paren {2 n + 1}!}\) Reduction Formula for Definite Integral of Power of Sine

We have:

\(\ds \int_0^1 \frac {\arcsin x} {\sqrt {1 - x^2} } \rd x\) \(=\) \(\ds \int_0^1 \sum_{n \mathop = 0}^\infty \frac {\paren {2 n}!} {2^{2 n} \paren {n!}^2 \paren {2 n + 1} } \frac {x^{2 n + 1} } {\sqrt {1 - x^2} } \rd x\) Power Series Expansion for Real Arcsine Function
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \frac {\paren {2 n}!} {2^{2 n} \paren {n!}^2 \paren {2 n + 1} } \int_0^1 \frac {x^{2 n + 1} } {\sqrt {1 - x^2} } \rd x\) Interchange of sum and integral is valid by Tonelli's Theorem
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \frac {\paren {2 n}!} {2^{2 n} \paren {n!}^2 \paren {2 n + 1} } \frac {2^{2 n} \paren {n!}^2} {\paren {2 n + 1}!}\) by $(1)$
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \frac 1 {\paren {2 n + 1}^2}\)

We also have:

\(\ds \int_0^1 \frac {\arcsin x} {\sqrt {1 - x^2} } \rd x\) \(=\) \(\ds \intlimits {\frac 1 2 \paren {\arcsin x}^2} 0 1\) Fundamental Theorem of Calculus
\(\ds \) \(=\) \(\ds \frac {\pi^2} 8\)

So we can deduce:

$\ds \sum_{n \mathop = 0}^\infty \frac 1 {\paren {2 n + 1}^2} = \frac {\pi^2} 8$


$\blacksquare$