Sum of Reciprocals of Squares of Odd Integers/Proof 5

From ProofWiki
Jump to navigation Jump to search

Theorem

\(\ds \sum_{n \mathop = 1}^\infty \frac 1 {\paren {2 n - 1}^2}\) \(=\) \(\ds 1 + \dfrac 1 {3^2} + \dfrac 1 {5^2} + \dfrac 1 {7^2} + \dfrac 1 {9^2} + \cdots\)
\(\ds \) \(=\) \(\ds \dfrac {\pi^2} 8\)


Proof

By Fourier Series of Absolute Value of x, for $x \in \closedint {-\pi} \pi$:

$\ds \size x = \frac \pi 2 - \frac 4 \pi \sum_{n \mathop = 1}^\infty \frac {\map \cos {\paren {2 n - 1} x} } {\paren {2 n - 1}^2}$



Setting $x = \pi$:

\(\ds \size \pi\) \(=\) \(\ds \frac \pi 2 - \frac 4 \pi \sum_{n \mathop = 1}^\infty \frac {\map \cos {2 \pi n - \pi} } {\paren {2 n - 1}^2}\)
\(\ds \) \(=\) \(\ds \frac \pi 2 - \frac 4 \pi \sum_{n \mathop = 1}^\infty \frac {\map \cos {-\pi} } {\paren {2 n - 1}^2}\) Sine and Cosine are Periodic on Reals
\(\ds \) \(=\) \(\ds \frac \pi 2 - \frac 4 \pi \sum_{n \mathop = 1}^\infty \frac {\cos \pi} {\paren {2 n - 1}^2}\) Cosine Function is Even
\(\ds \) \(=\) \(\ds \frac \pi 2 - \frac 4 \pi \sum_{n \mathop = 1}^\infty \frac {-1} {\paren {2 n - 1}^2}\) Cosine of Multiple of Pi
\(\ds \leadsto \ \ \) \(\ds \frac \pi 2\) \(=\) \(\ds \frac 4 \pi \sum_{n \mathop = 1}^\infty \frac 1 {\paren {2 n - 1}^2}\) Definition of Absolute Value and rearranging
\(\ds \leadsto \ \ \) \(\ds \frac {\pi^2} 8\) \(=\) \(\ds \sum_{n \mathop = 1}^\infty \frac 1 {\paren {2 n - 1}^2}\) multiplying through by $\dfrac \pi 4$

$\blacksquare$