Sum of Sequence of Fourth Powers
Jump to navigation
Jump to search
Theorem
- $\ds \sum_{k \mathop = 0}^n k^4 = \dfrac {\paren {n + 1} n \paren {n + \frac 1 2} \paren {3 n^2 + 3 n - 1} } {15}$
Proof using Binomial Coefficients
By definition of binomial coefficient:
\(\ds \binom k 4\) | \(=\) | \(\ds \frac {k \paren {k - 1} \paren {k - 2} \paren {k - 3} } {4 !}\) | ||||||||||||
\(\ds \binom k 3\) | \(=\) | \(\ds \frac {k \paren {k - 1} \paren {k - 2} } {3 !}\) | ||||||||||||
\(\ds \binom k 2\) | \(=\) | \(\ds \frac {k \paren {k - 1} } {2 !}\) | ||||||||||||
\(\ds \binom k 1\) | \(=\) | \(\ds k\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds 24 \binom k 4\) | \(=\) | \(\ds k^4 - 6 k^3 + 11 k^2 - 6 k\) | |||||||||||
\(\ds 36 \binom k 3\) | \(=\) | \(\ds 6 k^3 - 18 k^2 + 12 k\) | ||||||||||||
\(\ds 14 \binom k 2\) | \(=\) | \(\ds 7 k^2 - 7 k\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds k^4\) | \(=\) | \(\ds 24 \binom k 4 + 36 \binom k 3 + 14 \binom k 2 + \binom k 1\) |
So:
\(\ds \sum_{k \mathop = 0}^n k^4\) | \(=\) | \(\ds \sum_{k \mathop = 0}^n \paren {24 \binom k 4 + 36 \binom k 3 + 14 \binom k 2 + \binom k 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 24 \binom {n + 1} 5 + 36 \binom {n + 1} 4 + 14 \binom {n + 1} 3 + \binom {n + 1} 2\) | Sum of Binomial Coefficients over Upper Index | |||||||||||
\(\ds \) | \(=\) | \(\ds 24 \frac {\paren {n + 1} n \paren {n - 1} \paren {n - 2} \paren {n - 3} } {5 !}\) | Definition of Binomial Coefficient | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds 36 \frac {\paren {n + 1} n \paren {n - 1} \paren {n - 2} } {4 !}\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds 14 \frac {\paren {n + 1} n \paren {n - 1} } {3 !}\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \frac {\paren {n + 1} n } {2 !}\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {n + 1} n \paren {\frac {\paren {n - 1} \paren {n - 2} \paren {n - 3} } 5 + \frac {3 \paren {n - 1} \paren {n - 2} } 2 + \frac {7 \paren {n - 1} } 3 + \frac 1 2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\paren {n + 1} n} {30} \paren {6 \paren {n^3 - 6 n^2 + 11 n - 6 } + 45 \paren {n^2 - 3 n + 2} + 70 \paren {n - 1} + 15}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\paren {n + 1} n} {30} \paren {6 n^3 - 36 n^2 + 66 n - 36 + 45 n^2 - 135 n + 90 + 70 n - 70 + 15}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\paren {n + 1} n} {30} \paren {6 n^3 + 9 n^2 + n - 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\paren {n + 1} n} {30} \paren {2 n + 1} \paren {3 n^2 + 3 n - 1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\paren {n + 1} n \paren {n + \frac 1 2} \paren {3 n^2 + 3 n - 1} } {15}\) |
$\blacksquare$
Proof using Bernoulli Numbers
From Faulhaber's Formula:
\(\ds \sum_{i \mathop = 1}^n i^p\) | \(=\) | \(\ds 1^p + 2^p + \cdots + n^p\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {n^{p + 1} } {p + 1} + \sum_{k \mathop = 1}^p \frac {B_k \, p^{\underline {k - 1} } \, n^{p - k + 1} } {k!}\) |
where $B_k$ are the Bernoulli numbers.
Setting $p = 4$:
\(\ds \sum_{i \mathop = 1}^n i^4\) | \(=\) | \(\ds \frac {n^{4 + 1} } {4 + 1} + \sum_{k \mathop = 1}^4 \frac {B_k \, 4^{\underline {k - 1} } \, n^{4 - k + 1} } {k!}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {n^5} 5 + \frac {B_1 \, 4^{\underline 0} \, n^4} {1!} + \frac {B_2 \, 4^{\underline 1} \, n^3} {2!} + \frac {B_3 \, 4^{\underline 2} \, n^2} {3!} + \frac {B_4 \, 4^{\underline 3} \, n} {4!}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {n^5} 5 + \frac 1 2 \frac {n^4} {1!} + \frac 1 6 \frac {4 n^3} {2!} + 0 \frac {4 \times 3 n^2} {3!} - \frac 1 {30} \frac {4 \times 3 \times 2 n} {4!}\) | Definition of Bernoulli Numbers and Definition of Falling Factorial | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {n^5} 5 + \frac {n^4} 2 + \frac {n^3} 3 - \frac n {30}\) | simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {6 n^5 + 15 n^4 + 10 n^3 - n} {30}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \frac {n \paren {n + 1} \paren {2 n + 1} \paren {3 n^2 + 3 n - 1} } {30}\) |
Hence the result.
$\blacksquare$
Also presented as
This result can also be presented as:
- $\ds \sum_{k \mathop = 0}^n k^4 = \dfrac {n \paren {n + 1} \paren {2 n + 1} \paren {3 n^2 + 3 n - 1} } {30}$