Sum of Sequence of Products of Consecutive Reciprocals/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \sum_{j \mathop = 1}^n \frac 1 {j \paren {j + 1} } = \frac n {n + 1}$


Proof

We can observe that:

$\dfrac 1 {j \paren {j + 1} } = \dfrac 1 j - \dfrac 1 {j + 1}$

and that $\ds \sum_{j \mathop = 1}^n \paren {\frac 1 j - \frac 1 {j + 1} }$ is a telescoping series.

Therefore:

\(\ds \sum_{j \mathop = 1}^n \frac 1 {j \paren {j + 1} }\) \(=\) \(\ds \sum_{j \mathop = 1}^n \paren {\frac 1 j - \frac 1 {j + 1} }\) Telescoping Series: Example 1
\(\ds \) \(=\) \(\ds 1 - \frac 1 {n + 1}\)
\(\ds \) \(=\) \(\ds \frac n {n + 1}\)

$\blacksquare$


Sources