Sum of Sequence of Squares/Proof by Summation of Summations

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \forall n \in \N: \sum_{i \mathop = 1}^n i^2 = \frac {n \paren {n + 1} \paren {2 n + 1} } 6$


Proof

Sum of Sequences of Squares.jpg

We can observe from the above diagram that:

$\ds \forall n \in \N: \sum_{i \mathop = 1}^n i^2 = \sum_{i \mathop = 1}^n \paren {\sum_{j \mathop = i}^n j}$

Therefore we have:

\(\ds \sum_{i \mathop = 1}^n i^2\) \(=\) \(\ds \sum_{i \mathop = 1}^n \paren {\sum_{j \mathop = i}^n j}\)
\(\ds \) \(=\) \(\ds \sum_{i \mathop = 1}^n \paren {\sum_{j \mathop = 1}^n j - \sum_{j \mathop = 1}^{i - 1} j}\)
\(\ds \) \(=\) \(\ds \sum_{i \mathop = 1}^n \paren {\frac {n \paren {n + 1} } 2 - \frac {i \paren {i - 1} } 2}\)
\(\ds \leadsto \ \ \) \(\ds 2 \sum_{i \mathop = 1}^n i^2\) \(=\) \(\ds n^2 \paren {n + 1} - \sum_{i \mathop = 1}^n i^2 + \sum_{i \mathop = 1}^n i\)
\(\ds \leadsto \ \ \) \(\ds 3 \sum_{i \mathop = 1}^n i^2\) \(=\) \(\ds n^2 \paren {n + 1} + \sum_{i \mathop = 1}^n i\)
\(\ds \leadsto \ \ \) \(\ds 3 \sum_{i \mathop = 1}^n i^2\) \(=\) \(\ds n^2 \paren {n + 1} + \frac {n \paren {n + 1} } 2\) Closed Form for Triangular Numbers
\(\ds \leadsto \ \ \) \(\ds 6 \sum_{i \mathop = 1}^n i^2\) \(=\) \(\ds 2 n^2 \paren {n + 1} + n \paren {n + 1}\)
\(\ds \) \(=\) \(\ds n \paren {n + 1} \paren {2 n + 1}\)
\(\ds \leadsto \ \ \) \(\ds \sum_{i \mathop = 1}^n i^2\) \(=\) \(\ds \frac {n \paren {n + 1} \paren {2 n + 1} } 6\)

$\blacksquare$