Sum of Sequence of Triangular Numbers/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $n \in \Z_{>0}$ be a (strictly) positive integer.

Let $T_n$ denote the $n$th triangular number.


Then:

\(\ds \sum_{j \mathop = 1}^n T_j\) \(=\) \(\ds T_1 + T_2 + T_3 + \dotsb + T_n\)
\(\ds \) \(=\) \(\ds \dfrac {n \paren {n + 1} \paren {n + 2} } 6\)


Proof

From Sum of Sequence of n Choose 2 we have:

\(\ds \sum_{j \mathop = 2}^n \dbinom j 2\) \(=\) \(\ds \dbinom 2 2 + \dbinom 3 2 + \dbinom 4 2 + \dotsb + \dbinom n 2\)
\(\ds \) \(=\) \(\ds \dbinom {n + 1} 3\)

and so:

\(\ds \sum_{j \mathop = 2}^{n + 1} \dbinom j 2\) \(=\) \(\ds \dbinom 2 2 + \dbinom 3 2 + \dbinom 4 2 + \dotsb + \dbinom n 2 + \dbinom {n + 1} 2\)
\(\ds \) \(=\) \(\ds \dbinom {n + 2} 3\)

But we have that:

$\dbinom {n + 2} 3 = \dfrac {\paren {n + 2} \paren {n + 1} n} {3 \times 2 \times 1}$

and from Binomial Coefficient with Two:

$T_n = \dfrac {\paren {n + 1} n} 2 = \dbinom {n + 1} 2$

The result follows.

$\blacksquare$