Sum of Sines of Twice Angles of Triangle

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\triangle ABC$ be a triangle.

Then:

$\sin 2 A + \sin 2 B + \sin 2 C = 4 \sin A \sin B \sin C$


Proof

First we note that:

\(\ds A + B + C\) \(=\) \(\ds 180 \degrees\) Sum of Angles of Triangle equals Two Right Angles
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds A + B\) \(=\) \(\ds 180 \degrees - C\)

That is, $C$ is the supplement of $A + B$.


Then:

\(\ds \sin 2 A + \sin 2 B + \sin 2 C\) \(=\) \(\ds 2 \map \sin {A + B} \map \cos {A - B} + \sin 2 C\) Sine plus Sine
\(\ds \) \(=\) \(\ds 2 \map \sin {180 \degrees - C} \map \cos {A - B} + \sin 2 C\) from $(1)$
\(\ds \) \(=\) \(\ds 2 \sin C \map \cos {A - B} + \sin 2 C\) Sine of Supplementary Angle
\(\ds \) \(=\) \(\ds 2 \sin C \paren {\cos A \cos B + \sin A \sin B} + \sin 2 C\) Cosine of Difference
\(\ds \) \(=\) \(\ds 2 \sin C \paren {\cos A \cos B + \sin A \sin B} + 2 \sin C \cos C\) Double Angle Formula for Sine
\(\ds \) \(=\) \(\ds 2 \sin A \sin B \sin C + 2 \paren {\cos C + \cos A \cos B} \sin C\) multiplying out and rearranging
\(\ds \) \(=\) \(\ds 2 \sin A \sin B \sin C + 2 \paren {\map \cos {180 \degrees - \paren {A + B} } + \cos A \cos B} \sin C\) from $(1)$
\(\ds \) \(=\) \(\ds 2 \sin A \sin B \sin C + 2 \paren {-\map \cos {A + B} - \cos A \cos B} \sin C\) Cosine of Supplementary Angle
\(\ds \) \(=\) \(\ds 2 \sin A \sin B \sin C + 2 \paren {-\paren {\cos A \cos B - \sin A \sin B} + \cos A \cos B} \sin C\) Cosine of Sum
\(\ds \) \(=\) \(\ds 2 \sin A \sin B \sin C + 2 \paren {-\cos A \cos B + \cos A \cos B} \sin C + 2 \sin A \sin B \sin C\) multiplying out
\(\ds \) \(=\) \(\ds 4 \sin A \sin B \sin C\) simplifying

$\blacksquare$


Sources