Sum of Squares of Hyperbolic Secant and Tangent
Jump to navigation
Jump to search
Theorem
- $\sech^2 x + \tanh^2 x = 1$
where $\sech$ and $\tanh$ are hyperbolic secant and hyperbolic tangent.
Proof
\(\ds \sech^2 x + \tanh^2 x\) | \(=\) | \(\ds \paren {\frac 2 {e^x + e^{-x} } }^2 + \tanh^2 x\) | Definition 1 of Hyperbolic Secant | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\frac 2 {e^x + e^{-x} } }^2 + \paren {\frac {e^x - e^{-x} } {e^x + e^{-x} } }^2\) | Definition 1 of Hyperbolic Tangent | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {4 + e^{2 x} - 2 + e^{-2 x} } {e^{2 x} + 2 + e ^{-2 x} }\) | Exponent Combination Laws | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {e^{2 x} + 2 + e ^{-2 x} } {e^{2 x} + 2 + e ^{-2 x} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1\) |
$\blacksquare$
Also presented as
Sum of Squares of Hyperbolic Secant and Tangent can also be reported as:
- $1 - \tanh^2 x = \sech^2 x$
or:
- $1 - \sech^2 x = \tanh^2 x$
Also see
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $8.12$: Relationships among Hyperbolic Functions
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): hyperbolic functions
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): hyperbolic functions