Sum of Squares of Sine and Cosine/Proof 4
Jump to navigation
Jump to search
Theorem
- $\cos^2 x + \sin^2 x = 1$
Proof
\(\displaystyle \cos^2 x + \sin^2 x\) | \(=\) | \(\displaystyle \left({\cos x + i \, \sin x}\right) \, \left({\cos x - i \, \sin x}\right)\) | factoring over the complex numbers | ||||||||||
\(\displaystyle \) | \(=\) | \(\displaystyle \left({\cos x + i \, \sin x}\right) \, \left({\cos \left({-x}\right) + i \, \sin \left({-x}\right)}\right)\) | Cosine Function is Even and Sine Function is Odd | ||||||||||
\(\displaystyle \) | \(=\) | \(\displaystyle e^{ix} \, e^{-ix}\) | Euler's Formula | ||||||||||
\(\displaystyle \) | \(=\) | \(\displaystyle 1\) |
$\blacksquare$