Sum of Two Odd Powers/Examples/Sum of Two Cubes
Jump to navigation
Jump to search
Theorem
- $x^3 + y^3 = \paren {x + y} \paren {x^2 - x y + y^2}$
Proof 1
From Difference of Two Powers:
- $\ds a^n - b^n = \paren {a - b} \sum_{j \mathop = 0}^{n - 1} a^{n - j - 1} b^j$
Let $x = a$ and $y = -b$.
Then:
\(\ds x^3 + y^3\) | \(=\) | \(\ds x^3 - \paren {-y^3}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds x^3 - \paren {-y}^3\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {x - \paren {-y} } \sum_{j \mathop = 0}^2 x^{n - j - 1} \paren {-y}^j\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {x + y} \paren {x^2 + x \paren {-y} + \paren {-y}^2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {x + y} \paren {x^2 - x y + y^2}\) |
$\blacksquare$
Proof 2
From Sum of Two Odd Powers:
- $a^{2 n + 1} + b^{2 n + 1} = \paren {a + b} \paren {a^{2 n} - a^{2 n - 1} b + a^{2 n - 2} b^2 - \dotsb + a b^{2 n - 1} + b^{2 n} }$
We have that $3 = 2 \times 1 + 1$.
Hence setting $n = 1$ gives the result.
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 2$: Special Products and Factors: $2.13$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 2$: Special Products and Factors: $2.13.$