Sum of r Powers is not Greater than r times Power of Maximum
Jump to navigation
Jump to search
Theorem
Let $a_1, a_2, \ldots, a_r$ be non-negative real numbers.
Let $n \in \Z_{>0}$ be a (strictly) positive integer.
Let $a = \max \set {a_1, a_2, \ldots, a_r}$.
Then:
- $a_1^n + a_2^n + \cdots + a_r^n \le r a^n$
Proof
By definition of the $\max$ operation:
- $\exists k \in \set {1, 2, \ldots, r}: a_k = a$
Then:
- $\forall i \in \set {1, 2, \ldots, r}: a_i \le a_k$
Hence:
\(\ds \forall i \in \set {1, 2, \ldots, r}: \, \) | \(\ds a_i\) | \(=\) | \(\ds a_k\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \sum_{i \mathop = 1}^r a_i^n\) | \(\le\) | \(\ds \sum_{i \mathop = 1}^r a_k^n\) | |||||||||||
\(\ds \) | \(=\) | \(\ds r a_k^n\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds r a^n\) | Definition of $a_k$ |
Hence the result.
$\blacksquare$
Sources
- 1975: W.A. Sutherland: Introduction to Metric and Topological Spaces ... (previous) ... (next): $1$: Review of some real analysis: Exercise $1.5: 11$