Sum over k of n+k Choose 2 k by 2 k Choose k by -1^k over k+1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $n \in \Z_{\ge 0}$.


Then:

$\ds \sum_k \binom {n + k} {2 k} \binom {2 k} k \frac {\paren {-1}^k} {k + 1} = \sqbrk {n = 0}$

where:

$\dbinom {n + k} {2 k}$ etc. are binomial coefficients
$\sqbrk {n = 0}$ is Iverson's convention.


Proof 1

\(\ds \) \(\) \(\ds \sum_k \binom {n + k} {2 k} \binom {2 k} k \frac {\left({-1}\right)^k} {k + 1}\)
\(\ds \) \(=\) \(\ds \sum_k \binom {n + k} k \binom n k \frac {\left({-1}\right)} {k + 1}\) Product of $\dbinom r m$ with $\dbinom m k$
\(\ds \) \(=\) \(\ds \sum_k \binom {n + k} k \binom {n + 1} {k + 1} \frac {\left({-1}\right)^k} {n + 1}\) Factors of Binomial Coefficient
\(\ds \) \(=\) \(\ds \frac 1 {n + 1} \sum_{k \mathop \ge 0} \binom {n + k} n \binom {n + 1} {k + 1} \left({-1}\right)^k\) Symmetry Rule for Binomial Coefficients and rearranging
\(\ds \) \(=\) \(\ds -\frac 1 {n + 1} \sum_{k \mathop \ge 1} \binom {n - 1 + k} n \binom {n + 1} k \left({-1}\right)^k\) Translation of Index Variable of Summation
\(\ds \) \(=\) \(\ds -\frac 1 {n + 1} \sum_{k \mathop \ge 0} \binom {n - 1 + k} n \binom {n + 1} k \left({-1}\right)^k + \frac 1 {n + 1} \binom {n - 1} n\) separating out the case where $k = 0$
\(\ds \) \(=\) \(\ds -\frac 1 {n + 1} \left({-1}\right)^{n + 1} \binom {n - 1} {-1} + \frac 1 {n + 1} \binom {n - 1} n\) Sum over $k$ of $\dbinom r k \dbinom {s + k} n (-1)^{r - k}$
\(\ds \) \(=\) \(\ds \frac 1 {n + 1} \binom {n - 1} n\) as $\dbinom {n - 1} {-1} = 0$
\(\ds \) \(=\) \(\ds \left[{n = 0}\right]\) as $\dbinom {n - 1} n = 1 \iff n = 0$

$\blacksquare$


Proof 2

\(\ds \) \(\) \(\ds \sum_k \binom {n + k} {2 k} \binom {2 k} k \frac {\left({-1}\right)^k} {k + 1}\)
\(\ds \) \(=\) \(\ds \sum_k \binom {n + k} k \binom n k \frac {\left({-1}\right)} {k + 1}\) Product of $\dbinom r m$ with $\dbinom m k$
\(\ds \) \(=\) \(\ds \sum_k \binom {n + k} k \binom {n + 1} {k + 1} \frac {\left({-1}\right)^k} {n + 1}\) Factors of Binomial Coefficient
\(\ds \) \(=\) \(\ds \frac 1 {n + 1} \sum_k \binom {- \left({n + 1}\right)} k \binom {n + 1} {k + 1}\) Negated Upper Index of Binomial Coefficient
\(\ds \) \(=\) \(\ds \frac 1 {n + 1} \binom {n + 1 - \left({n + 1}\right)} {n + 1 - 1 + 0}\) Sum over $k$ of $\dbinom r {m + k} \dbinom s {n + k}$
\(\ds \) \(=\) \(\ds \frac 1 {n + 1} \binom 0 n\)
\(\ds \) \(=\) \(\ds \left[{n = 0}\right]\) Definition of Binomial Coefficient

$\blacksquare$