Summation of Product of Differences

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \sum_{1 \mathop \le i \mathop < j \mathop \le n} \paren {u_j - u_k} \paren {v_j - v_k} = n \sum_{j \mathop = 1}^n u_j v_j - \sum_{j \mathop = 1}^n u_j \sum_{j \mathop = 1}^n v_j$


Proof

Take the Binet-Cauchy Identity:

$\ds \paren {\sum_{i \mathop = 1}^n a_i c_i} \paren {\sum_{j \mathop = 1}^n b_j d_j} = \paren {\sum_{i \mathop = 1}^n a_i d_i} \paren {\sum_{j \mathop = 1}^n b_j c_j} + \sum_{1 \mathop \le i \mathop < j \mathop \le n} \paren {a_i b_j - a_j b_i} \paren {c_i d_j - c_j d_i}$


Make the following assignments:

\(\ds 1 \le i \le n: \, \) \(\ds a_i\) \(:=\) \(\ds u_i\)
\(\ds 1 \le i \le n: \, \) \(\ds c_i\) \(:=\) \(\ds v_i\)
\(\ds 1 \le j \le n: \, \) \(\ds b_j\) \(:=\) \(\ds 1\)
\(\ds 1 \le j \le n: \, \) \(\ds d_j\) \(:=\) \(\ds 1\)

Then we have:

$\ds \paren {\sum_{i \mathop = 1}^n u_i v_i} \paren {\sum_{j \mathop = 1}^n 1 \times 1} = \paren {\sum_{i \mathop = 1}^n u_i \times 1} \paren {\sum_{j \mathop = 1}^n 1 \times v_j} + \sum_{1 \mathop \le i \mathop < j \mathop \le n} \paren {u_i \times 1 - u_j \times 1} \paren {v_i \times 1 - v_j \times 1}$

and the result follows.

$\blacksquare$


Sources