Summation of Products of n Numbers taken m at a time with Repetitions/Examples/Order 2/Proof 1
Jump to navigation
Jump to search
Theorem
- $\ds \sum_{i \mathop = a}^b \sum_{j \mathop = a}^i x_i x_j = \dfrac 1 2 \paren {\paren {\sum_{i \mathop = a}^b x_i}^2 + \paren {\sum_{i \mathop = a}^b {x_i}^2} }$
Proof
Let:
\(\ds S_1\) | \(:=\) | \(\ds \sum_{i \mathop = a}^b \sum_{j \mathop = a}^i x_i x_j\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{j \mathop = a}^b \sum_{i \mathop = j}^b x_i x_j\) | Summation of i from 1 to n of Summation of j from 1 to i | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{i \mathop = a}^b \sum_{j \mathop = i}^b x_i x_j\) | Change of Index Variable of Summation | |||||||||||
\(\ds \) | \(=:\) | \(\ds S_2\) |
Then:
\(\ds 2 S_1\) | \(=\) | \(\ds S_1 + S_2\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{i \mathop = a}^b \paren {\sum_{j \mathop = a}^i x_i x_j + \sum_{j \mathop = i}^b x_i x_j}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{i \mathop = a}^b \paren {\paren {\sum_{j \mathop = a}^b x_i x_j} + x_i x_i}\) | Sum of Summations over Overlapping Domains: Example | |||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{i \mathop = a}^b \sum_{j \mathop = a}^b x_i x_j + \sum_{i \mathop = a}^b x_i x_i\) | Sum of Summations equals Summation of Sum | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\sum_{i \mathop = a}^b x_i} \paren {\sum_{j \mathop = a}^b x_j} + \paren {\sum_{i \mathop = a}^b {x_i}^2}\) | Change of Index Variable of Summation |
The result follows on multiplying by $\dfrac 1 2$.
$\blacksquare$
Sources
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.3$: Sums and Products: Example $2$. $(13)$