Summation over Cartesian Product as Double Summation

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $\mathbb A$ be one of the standard number systems $\N, \Z, \Q, \R, \C$.

Let $S, T$ be finite sets.

Let $S \times T$ be their cartesian product.

Then we have an equality of summations over finite sets:

$\ds \sum_{s \mathop \in S} \sum_{t \mathop \in T} \map f {s, t} = \sum_{\tuple {s, t} \mathop \in S \times T} \map f {s, t}$


Outline of proof

We use induction on the cardinality of $T$. In the induction step, we use Sum over Disjoint Union of Finite Sets and Summation of Sum of Mappings on Finite Set.


Proof



Also see