Summation to n of kth Harmonic Number over k

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \sum_{k \mathop = 1}^n \dfrac {H_k} k = \dfrac { {H_n}^2 + \harm 2 n } 2$

where:

$H_n$ denotes the $n$th harmonic number
$\harm 2 n$ denotes the general harmonic number of order $2$ evaluated at $n$.


Proof

\(\ds \sum_{k \mathop = 1}^n \dfrac {H_k} k\) \(=\) \(\ds \sum_{k \mathop = 1}^n \dfrac 1 k \sum_{j \mathop = 1}^k \dfrac 1 j\) Definition of Harmonic Number
\(\ds \) \(=\) \(\ds \sum_{k \mathop = 1}^n \sum_{j \mathop = 1}^k \dfrac 1 j \dfrac 1 k\)
\(\ds \) \(=\) \(\ds \dfrac 1 2 \paren {\paren {\sum_{k \mathop = 1}^n \dfrac 1 k}^2 + \paren {\sum_{k \mathop = 1}^n \dfrac 1 {k^2} } }\) Summation of Products of $n$ Numbers taken $m$ at a time with Repetitions: Order $2$
\(\ds \) \(=\) \(\ds \dfrac { {H_n}^2 + \harm 2 n } 2\) Definition of Harmonic Number and Definition of General Harmonic Numbers

Hence the result.

$\blacksquare$


Sources