Supremum Inequality for Ordinals

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $A \subseteq \On$ and $B \subseteq \On$ be ordinals.


Then:

$\ds \forall x \in A: \exists y \in B: x \le y \implies \bigcup A \le \bigcup B$


Proof

\(\ds x\) \(<\) \(\ds \bigcup A\)
\(\ds \leadsto \ \ \) \(\ds \exists z: \, \) \(\ds x\) \(<\) \(\ds z\) Definition of Set Union
\(\, \ds \land \, \) \(\ds z < A\) \(<\) \(\ds A\)
\(\ds \leadsto \ \ \) \(\ds \exists y \in B: \exists z: \, \) \(\ds x\) \(<\) \(\ds z\) by hypothesis
\(\, \ds \land \, \) \(\ds z\) \(\le\) \(\ds y\)
\(\ds \leadsto \ \ \) \(\ds \exists y \in B: \, \) \(\ds x\) \(<\) \(\ds y\)
\(\ds \leadsto \ \ \) \(\ds x\) \(<\) \(\ds \bigcup B\) Union of Ordinals is Least Upper Bound

Therefore:

$\ds \bigcup A \subseteq \bigcup B$

and:

$\ds \bigcup A \le \bigcup B$

$\blacksquare$


Warning

The converse of this statement does not hold.




Sources