Supremum Metric on Bounded Real Sequences is Metric

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $A$ be the set of all bounded real sequences.

Let $d: A \times A \to \R$ be the supremum metric on $A$.


Then $d$ is a metric.


Proof 1

By definition, a real sequence is a mapping from the natural numbers $\N$ to the real numbers $\R$.

Thus a bounded real sequence is a bounded real-valued function.

The result follows from Supremum Metric on Bounded Real-Valued Functions is Metric.

$\blacksquare$


Proof 2

We have that the supremum metric on $A \times A$ is defined as:

$\ds \forall x, y \in A: \map d {x, y} := \sup_{n \mathop \in \N} \size {x_n - y_n}$

where $x = \sequence {x_i}$ and $y = \sequence {y_i}$ are bounded real sequences.


So:

$\exists K, L \in \R: \size {x_n} \le K, \size {y_n} \le L$

for all $n \in \N$.


First note that we have:

\(\ds \size {x_n - y_n}\) \(=\) \(\ds \size {x_n + \paren {-y_n} }\)
\(\ds \) \(\le\) \(\ds \size {x_n} + \size {\paren {-y_n} }\) Triangle Inequality for Real Numbers
\(\ds \) \(=\) \(\ds \size {x_n} + \size {y_n}\) Definition of Absolute Value
\(\ds \) \(\le\) \(\ds K + L\)

and so the right hand side exists.


Proof of Metric Space Axiom $(\text M 1)$

\(\ds \map d {x, x}\) \(=\) \(\ds \sup_{n \mathop \in \N} \size {x_n - x_n}\) Definition of $d$
\(\ds \) \(=\) \(\ds \sup_{n \mathop \in \N} \size 0\)
\(\ds \) \(=\) \(\ds 0\)

So Metric Space Axiom $(\text M 1)$ holds for $d$.

$\Box$


Proof of Metric Space Axiom $(\text M 2)$: Triangle Inequality

Let $x, y, z \in A$.

Let $n \in \N$.

\(\ds n\) \(\in\) \(\ds \N\)
\(\ds \leadsto \ \ \) \(\ds \size {x_n - z_n}\) \(\le\) \(\ds \size {x_n - y_n} + \size {y_n - z_n}\) Triangle Inequality for Real Numbers
\(\ds \) \(\le\) \(\ds \sup_{n \mathop \in \N} \size {x_n - y_n} + \sup_{n \mathop \in \N} \size {y_n - z_n}\) Definition of Supremum of Real Sequence
\(\ds \) \(=\) \(\ds \map d {x, y} + \map d {y, z}\) Definition of $d$

Thus $\map d {x, y} + \map d {y, z}$ is an upper bound for:

$S := \set {\size {x_n - z_n}: n \in \N}$

So:

$\map d {x, y} + \map d {y, z} \ge \sup S = \map d {x, z}$

So Metric Space Axiom $(\text M 2)$: Triangle Inequality holds for $d$.

$\Box$


Proof of Metric Space Axiom $(\text M 3)$

\(\ds \map d {x, y}\) \(=\) \(\ds \sup_{n \mathop \in \N} \size {x_n - y_n}\) Definition of $d$
\(\ds \) \(=\) \(\ds \sup_{n \mathop \in \N} \size {y_n - x_n}\) Definition of Absolute Value
\(\ds \) \(=\) \(\ds \map d {y, x}\) Definition of $d$

So Metric Space Axiom $(\text M 3)$ holds for $d$.

$\Box$


Proof of Metric Space Axiom $(\text M 4)$

As $d$ is the supremum of the absolute value of the difference of terms of the sequences $\sequence {x_i}$ and $\sequence {y_i}$:

$\forall x, y \in A: \map d {x, y} \ge 0$

Suppose $x, y \in A: \map d {x, y} = 0$.

Then:

\(\ds \map d {x, y}\) \(=\) \(\ds 0\)
\(\ds \leadsto \ \ \) \(\ds \sup_{n \mathop \in \N} \size {x_n - y_n}\) \(=\) \(\ds 0\) Definition of $d$
\(\ds \leadsto \ \ \) \(\ds \forall n \mathop \in \N: \, \) \(\ds x_n\) \(=\) \(\ds y_n\) Definition of Absolute Value
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds y\) Equality of Mappings

So Metric Space Axiom $(\text M 4)$ holds for $d$.

$\blacksquare$