Symbols:D/Divergence Operator
Jump to navigation
Jump to search
Divergence Operator
- $\operatorname {div}$
Let $R$ be a region of space embedded in a Cartesian coordinate frame.
Let $\mathbf V$ be a vector field acting over $R$.
The divergence of $\mathbf V$ at a point $A$ in $R$ is defined as:
\(\ds \operatorname {div} \mathbf V\) | \(:=\) | \(\ds \nabla \cdot \mathbf V\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\partial V_x} {\partial x} + \dfrac {\partial V_y} {\partial y} + \dfrac {\partial V_z} {\partial z}\) |
where:
- $\nabla$ denotes the Del operator
- $\cdot$ denotes the dot product
- $V_x$, $V_y$ and $V_z$ denote the magnitudes of the components of $\mathbf V$ at $A$ in the directions of the coordinate axes $x$, $y$ and $z$ respectively.
The $\LaTeX$ code for \(\operatorname {div} \mathbf V\) is \operatorname {div} \mathbf V
.
Sources
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): div
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): div
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): divergence: 2. (div)
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): div
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): divergence: 2. (div)
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): div