Symbols:Greek/Delta

From ProofWiki
< Symbols:Greek(Redirected from Symbols:Delta)
Jump to navigation Jump to search

Previous  ... Next

Delta

The $4$th letter of the Greek alphabet.

Minuscule: $\delta$
Majuscule: $\Delta$

The $\LaTeX$ code for \(\delta\) is \delta .

The $\LaTeX$ code for \(\Delta\) is \Delta .


Arbitrarily Small Real Number

$\delta$


$\delta$ is often used to mean an arbitrarily small (strictly) positive real number.


For example, the definition of a limit of a real function $f$:

$\forall \epsilon \in \R_{>0}: \exists \delta \in \R_{>0}: \forall x \in \R: 0 < \size {x - c} < \delta \implies \size {\map f x - L} < \epsilon$

is interpreted to mean:

For every arbitrarily small (strictly) positive real number $\epsilon$, there exists an arbitrarily small (strictly) positive real number $\delta$ such that every real number $x \ne c$ in the domain of $f$ within $\delta$ of $c$ has an image within $\epsilon$ of $L$.

The $\LaTeX$ code for \(\delta\) is \delta .


Arbitrarily Small Change

$\delta x$


$\delta x$ is often used to mean an arbiitrary small change or difference in the value of the (real) variable $x$.


For example, for the definition of derivative:

$\displaystyle \dfrac {\d y} {\d x} = \lim_{\delta x \mathop \to 0} \dfrac {\delta y} {\delta x} = \lim_{x_2 - x_1 \mathop \to 0} \dfrac {y_2 - y_1} {x_2 - x_1} = \lim_{\text{change in } x \mathop \to 0} \dfrac {\text{change in } y} {\text{change in } x}$


The $\LaTeX$ code for \(\delta x\) is \delta x .


Kronecker Delta

$\delta_{x y}$


Let $\Gamma$ be a set.

Let $R$ be a ring with unity whose zero is $0_R$ and whose unity is $1_R$.


Then $\delta_{\alpha \beta}: \Gamma \times \Gamma \to R$ is the mapping on the cartesian square of $\Gamma$ defined as:

$\forall \tuple {\alpha, \beta} \in \Gamma \times \Gamma: \delta_{\alpha \beta} := \begin{cases} 1_R & :\alpha = \beta \\ 0_R & :\alpha \ne \beta \end{cases}$

This use of $\delta$ is known as the Kronecker delta notation or Kronecker delta convention.


It can be expressed in Iverson bracket notation as:

$\delta_{\alpha \beta} := \sqbrk {\alpha = \beta}$


The $\LaTeX$ code for \(\delta_{x y}\) is \delta_{x y} .


Diagonal Relation

$\Delta_S$


Let $S$ be a set.

The diagonal relation on $S$ is a relation $\Delta_S$ on $S$ such that:

$\Delta_S = \set {\tuple {x, x}: x \in S} \subseteq S \times S$

Alternatively:

$\Delta_S = \set {\tuple {x, y}: x, y \in S: x = y}$


The $\LaTeX$ code for \(\Delta_S\) is \Delta_S .


Product of Differences

$\map {\Delta_n} {x_1, x_2, \ldots, x_n}$


Let $n \in \Z_{> 0}$ be a strictly positive integer.

Let $\tuple {x_1, x_2, \ldots, x_n}$ be an ordered $n$-tuple of real numbers.


The product of differences of $\tuple {x_1, x_2, \ldots, x_n}$ is defined and denoted as:

$\map {\Delta_n} {x_1, x_2, \ldots, x_n} = \displaystyle \prod_{1 \mathop \le i \mathop < j \mathop \le n} \paren {x_i - x_j}$


When the underlying ordered $n$-tuple is understood, the notation is often abbreviated to $\Delta_n$.


Thus $\Delta_n$ is the product of the difference of all ordered pairs of $\tuple {x_1, x_2, \ldots, x_n}$ where the index of the first is less than the index of the second.


The $\LaTeX$ code for \(\map {\Delta_n} {x_1, x_2, \ldots, x_n}\) is \map {\Delta_n} {x_1, x_2, \ldots, x_n} .


Change

$\Delta x$


$\Delta x$ is often used to mean change or difference in the value of the (real) variable $x$.

For example, for the definition of slope:

$\dfrac {\Delta y} {\Delta x} = \dfrac {y_2 - y_1} {x_2 - x_1} = \dfrac {\text{change in } y} {\text{change in } x}$


The $\LaTeX$ code for \(\Delta x\) is \Delta x .