Symbols:Greek/Delta/Dirac Delta Function
< Symbols:Greek | Delta
Jump to navigation
Jump to search
Dirac Delta Function
- $\map \delta x$
Let $\epsilon \in \R_{>0}$ be a (strictly) positive real number.
Consider the real function $F_\epsilon: \R \to \R$ defined as:
- $\map {F_\epsilon} x := \begin{cases} 0 & : x < 0 \\ \dfrac 1 \epsilon & : 0 \le x \le \epsilon \\ 0 & : x > \epsilon \end{cases}$
The Dirac delta function is defined as:
- $\map \delta x := \ds \lim_{\epsilon \mathop \to 0} \map {F_\epsilon} x$
The $\LaTeX$ code for \(\map \delta x\) is \map \delta x
.
Sources
- 1978: Ronald N. Bracewell: The Fourier Transform and its Applications (2nd ed.) ... (previous) ... (next): Frontispiece
- 1978: Ronald N. Bracewell: The Fourier Transform and its Applications (2nd ed.) ... (previous) ... (next): Chapter $4$: Notation for some useful Functions: Summary of special symbols: Table $4.1$ Special symbols
- 1978: Ronald N. Bracewell: The Fourier Transform and its Applications (2nd ed.) ... (previous) ... (next): Inside Back Cover
- 1989: Ephraim J. Borowski and Jonathan M. Borwein: Dictionary of Mathematics ... (previous) ... (next): Appendix $1$: Symbols and Conventions: Greek Alphabet
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Dirac delta function (delta function)
- 2021: Richard Earl and James Nicholson: The Concise Oxford Dictionary of Mathematics (6th ed.) ... (previous) ... (next): $\map \delta x$