Symbols:Greek/Rho

From ProofWiki
Jump to navigation Jump to search

Previous  ... Next

Rho

The $17$th letter of the Greek alphabet.

Minuscules: $\rho$ and $\varrho$
Majuscule: $\Rho$

The $\LaTeX$ code for \(\rho\) is \rho .
The $\LaTeX$ code for \(\varrho\) is \varrho .

The $\LaTeX$ code for \(\Rho\) is \Rho .


Density

$\rho$


Used to denote the density of a given body:

$\rho = \dfrac m V$

where:

$m$ is the body's mass
$V$ is the body's volume


Area Density

$\rho_A$


Used to denote the area density of a given two-dimensional body:

$\rho_A = \dfrac m A$

where:

$m$ is the body's mass
$A$ is the body's area.


The $\LaTeX$ code for \(\rho_A\) is \rho_A .


Volume Charge Density

$\rho$


Used to denote volume charge density:

$\rho = \dfrac {\d Q} {\d V}$

where:

$Q$ is the electric charge
$V$ is the volume


Right Regular Representation

$\rho_a$


Let $\struct {S, \circ}$ be an algebraic structure.


The mapping $\rho_a: S \to S$ is defined as:

$\forall x \in S: \map {\rho_a} x = x \circ a$


This is known as the right regular representation of $\struct {S, \circ}$ with respect to $a$.


The $\LaTeX$ code for \(\map {\rho_a} x\) is \map {\rho_a} x .


Radius of Curvature

$\rho$


The radius of curvature of a curve $C$ at a point $P$ is defined as the reciprocal of the absolute value of its curvature:

$\rho = \dfrac 1 {\size k}$


Autocorrelation

$\rho_k$


Let $S$ be a stochastic process giving rise to a time series $T$.

The autocorrelation of $S$ at lag $k$ is defined as:

$\rho_k := \dfrac {\expect {\paren {z_t - \mu} \paren {z_{t + k} - \mu} } } {\sqrt {\expect {\paren {z_t - \mu}^2} \expect {\paren {z_{t + k} - \mu}^2} } }$

where:

$z_t$ is the observation at time $t$
$\mu$ is the mean of $S$
$\expect \cdot$ is the expectation.


Previous  ... Next