Symbols:LaTeX Commands/A

From ProofWiki
Jump to navigation Jump to search


Previous  ... Next

Taken from:

Also see:

\({a+1} \above 2pt {b+2} \) $\quad:\quad${a+1} \above 2pt {b+2}
\({a+1} \abovewithdelims [ ] 3pt {b+2} \) $\quad:\quad${a+1} \abovewithdelims [ ] 3pt {b+2}
\(\acute e\) $\quad:\quad$\acute e
\(\AA\) $\quad:\quad$\AA $\qquad$that is: \mathcal A $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$
\(\Add\) $\quad:\quad$\Add $\qquad$Addition as a Primitive Recursive Function‎ $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$
\(\adj {\mathbf A}\) $\quad:\quad$\adj {\mathbf A} $\qquad$Adjugate Matrix $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$
\(\aleph\) $\quad:\quad$\aleph
\(\alpha\) $\quad:\quad$\alpha
\(\amalg\) $\quad:\quad$\amalg
\(\And\) $\quad:\quad$\And\&
\(\angle\) $\quad:\quad$\angle
\(\approx\) $\quad:\quad$\approx
\(\approxeq\) $\quad:\quad$\approxeq
\(\arccos\) $\quad:\quad$\arccos $\qquad$Arccosine
\(\arccot\) $\quad:\quad$\arccot $\qquad$Arccotangent $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$
\(\arccsc\) $\quad:\quad$\arccsc $\qquad$Arccosecant $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$
\(\arcosh\) $\quad:\quad$\arcosh $\qquad$Area Hyperbolic Cosine $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$
\(\Arcosh\) $\quad:\quad$\Arcosh $\qquad$Complex Area Hyperbolic Cosine $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$
\(\arcoth\) $\quad:\quad$\arcoth $\qquad$Area Hyperbolic Cotangent $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$
\(\Arcoth\) $\quad:\quad$\Arcoth $\qquad$Complex Area Hyperbolic Cotangent $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$
\(\arcsch\) $\quad:\quad$\arcsch $\qquad$Area Hyperbolic Cosecant $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$
\(\Arcsch\) $\quad:\quad$\Arcsch $\qquad$Complex Area Hyperbolic Cosecant $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$
\(\arcsec\) $\quad:\quad$\arcsec $\qquad$Arcsecant $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$
\(\arcsin\) $\quad:\quad$\arcsin $\qquad$Arcsine
\(\arctan\) $\quad:\quad$\arctan $\qquad$Arctangent
\(\arsech\) $\quad:\quad$\arsech $\qquad$Area Hyperbolic Secant $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$
\(\Arsech\) $\quad:\quad$\Arsech $\qquad$Complex Area Hyperbolic Secant $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$
\(\arsinh\) $\quad:\quad$\arsinh $\qquad$Area Hyperbolic Sine $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$
\(\Arsinh\) $\quad:\quad$\Arsinh $\qquad$Complex Area Hyperbolic Sine $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$
\(\artanh\) $\quad:\quad$\artanh $\qquad$Area Hyperbolic Tangent $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$
\(\Artanh\) $\quad:\quad$\Artanh $\qquad$Complex Area Hyperbolic Tangent $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$
\(\Area\) $\quad:\quad$\Area $\qquad$Area of Plane Figure $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$
\(\arg\) $\quad:\quad$\arg $\qquad$Argument of Complex Number
\(\Arg z\) $\quad:\quad$\Arg z $\qquad$Principal Argument of Complex Number $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$
\(\array{a & b \cr d & e} \) $\quad:\quad$\array{a & b \cr d & e}
\(\ast\) $\quad:\quad$\ast*
\(\asymp\) $\quad:\quad$\asymp
\(a \atop b\) $\quad:\quad$a \atop b
\({a \atopwithdelims [ ] b} \) $\quad:\quad${a \atopwithdelims [ ] b}
\(\Aut {S}\) $\quad:\quad$\Aut {S} $\qquad$Automorphism Group $\quad$Custom $\mathsf{Pr} \infty \mathsf{fWiki}$