Symbols:N

From ProofWiki
Jump to: navigation, search

Previous  ... Next

nano-

$\mathrm n$

The Système Internationale d'Unités metric scaling prefix denoting $10^{\, -9 }$.


Its $\LaTeX$ code is \mathrm {n} .

Sources


The Set of Natural Numbers

$\N$

The set of natural numbers:

$\N = \left\{{0, 1, 2, 3, \ldots}\right\}$.


The $\LaTeX$ code for \(\N\) is \N  or \mathbb N or \Bbb N.


The Set of Non-Zero Natural Numbers

$\N_{> 0}$ or $\N_{\ne 0}$

The set of non-zero natural numbers:

$\N_{> 0} = \left\{{1, 2, 3, \ldots}\right\}$.


The $\LaTeX$ code for \(\N_{> 0}\) is \N_{> 0}  or \mathbb N_{> 0} or \Bbb N_{> 0.}

The $\LaTeX$ code for \(\N_{\ne 0}\) is \N_{\ne 0}  or \mathbb N_{\ne 0} or \Bbb N_{\ne 0.}


Deprecated

$\N^*$

The set of non-zero natural numbers:

$\N^* = \left\{{1, 2, 3, \ldots}\right\}$.


The $\LaTeX$ code for \(\N^*\) is \N^*  or \mathbb N^* or \Bbb N^*.


Initial Segment of Natural Numbers

$\N_n$, $\N^*_n$

The set $\N_n$ is the set of all natural numbers which are less than $n$:

$\N_n = \left\{{x \in \N: x < n}\right\} = \left\{{0, 1, 2, \ldots, n-1}\right\}$.


The $\LaTeX$ code for \(\N_n\) is \N_n  or \mathbb N_n or \Bbb N_n.


Similarly, the set $\N^*_n$ is the set of all non-zero natural numbers which are less or equal to $n$:

$\N^*_n = \left\{{x \in \N^*: x \le n}\right\} = \left\{{1, 2, \ldots, n}\right\}$.


The $\LaTeX$ code for \(\N^*_n\) is \N^*_n  or \mathbb N^*_n or \Bbb N^*_n.


Deprecated Usages

Older literature tends to use $\N$ to mean $\left\{{1, 2, 3, \ldots}\right\}$.


Consequently, the set $\left\{{0, 1, 2, 3, \ldots}\right\}$ needs another symbol to denote it. The usual technique is to use $\tilde {\N}$.

The $\LaTeX$ code for \(\tilde \N\) is \tilde \N .