Symmetry Group of Regular Hexagon/Group Action on Vertices

From ProofWiki
Jump to navigation Jump to search

Group Action of Symmetry Group of Regular Hexagon

Let $\mathcal H = ABCDEF$ be a regular hexagon.

Let $D_6$ denote the symmetry group of $\mathcal H$.

SymmetryGroupRegularHexagon.png

Let $e$ denote the identity mapping

Let $\alpha$ denote rotation of $\mathcal H$ anticlockwise through $\dfrac \pi 3$ radians ($60 \degrees$)

Let $\beta$ denote reflection of $\mathcal H$ in the $AD$ axis.


$D_6$ acts on the vertices of $\mathcal H$ according to this table:

$\begin{array}{cccccccccccc} e & \alpha & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \beta & \alpha \beta & \alpha^2 \beta & \alpha^3 \beta & \alpha^4 \beta & \alpha^5 \beta \\ \hline A & B & C & D & E & F & A & B & C & D & E & F \\ B & C & D & E & F & A & F & A & B & C & D & E \\ C & D & E & F & A & B & E & F & A & B & C & D \\ D & E & F & A & B & C & D & E & F & A & B & C \\ E & F & A & B & C & D & C & D & E & F & A & B \\ F & A & B & C & D & E & B & C & D & E & F & A \\ \end{array}$


Sources