T0 Property is Hereditary

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $T = \struct {S, \tau}$ be a topological space which is a $T_0$ (Kolmogorov) space.

Let $T_H = \struct {H, \tau_H}$, where $\O \subset H \subseteq S$, be a subspace of $T$.


Then $T_H$ is a $T_0$ (Kolmogorov) space.


Proof

Let $T$ be a $T_0$ (Kolmogorov) space.

That is:

$\forall x, y \in S$ such that $x \ne y$, either:
$\exists U \in \tau: x \in U, y \notin U$
or:
$\exists U \in \tau: y \in U, x \notin U$


We have that the set $\tau_H$ is defined as:

$\tau_H := \set {U \cap H: U \in \tau}$


Let $x, y \in H$ such that $x \ne y$.

Then as $x, y \in S$ we have that:

$\exists U \in \tau: x \in U, y \notin U$

or:

$\exists U \in \tau: y \in U, x \notin U$

Then either:

$U \cap H \in \tau_H: x \in U \cap H, y \notin U \cap H$

or:

$U \cap H \in \tau_H: y \in U \cap H, x \notin U \cap H$

and so the $T_0$ axiom is satisfied.

$\blacksquare$


Sources