Tangent Exponential Formulation/Formulation 1
Jump to navigation
Jump to search
Theorem
Let $z$ be a complex number.
Let $\tan z$ denote the tangent function and $i$ denote the imaginary unit: $i^2 = -1$.
Then:
- $\tan z = i \dfrac {1 - e^{2 i z} } {1 + e^{2 i z} }$
Proof
\(\ds \tan z\) | \(=\) | \(\ds \frac {\sin z} {\cos z}\) | Definition of Complex Tangent Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\frac 1 2 i \paren {e^{-i z} - e^{i z} } } {\frac 1 2 \paren {e^{-i z} + e^{i z} } }\) | Sine Exponential Formulation and Cosine Exponential Formulation | |||||||||||
\(\ds \) | \(=\) | \(\ds i \frac {e^{-i z} - e^{i z} } {e^{-i z} + e^{i z} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds i \frac {1 - e^{2 i z} } {1 + e^{2 i z} }\) | multiplying numerator and denominator by $e^{i z}$ |
$\blacksquare$