Tangent Exponential Formulation/Formulation 2
Jump to navigation
Jump to search
Theorem
Let $z$ be a complex number.
Let $\tan z$ denote the tangent function and $i$ denote the imaginary unit: $i^2 = -1$.
Then:
- $\tan z = \dfrac {e^{i z} - e^{-i z} } {i \paren {e^{i z} + e^{-i z} } }$
Proof
\(\ds \tan z\) | \(=\) | \(\ds \frac {\sin z} {\cos z}\) | Definition of Complex Tangent Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {e^{i z} - e^{-i z} } {2 i} / \frac {e^{i z} + e^{-i z} } 2\) | Sine Exponential Formulation and Cosine Exponential Formulation | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {e^{i z} - e^{-i z} } {i \paren {e^{i z} + e^{-i z} } }\) | multiplying top and bottom by $2 i$ |
$\blacksquare$
Sources
- 1960: Walter Ledermann: Complex Numbers ... (previous) ... (next): $\S 4.5$. The Functions $e^z$, $\cos z$, $\sin z$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 7$: Relationship between Exponential and Trigonometric Functions: $7.19$
- 1981: Murray R. Spiegel: Theory and Problems of Complex Variables (SI ed.) ... (previous) ... (next): $2$: Functions, Limits and Continuity: The Elementary Functions: $4$