Tangent Exponential Formulation/Formulation 3
Jump to navigation
Jump to search
Theorem
Let $z$ be a complex number.
Let $\tan z$ denote the tangent function and $i$ denote the imaginary unit: $i^2 = -1$.
Then:
- $\tan z = -i \paren {\dfrac {e^{i z} - e^{-i z} } {e^{i z} + e^{-i z} } }$
Proof
\(\ds \tan z\) | \(=\) | \(\ds \frac {\sin z} {\cos z}\) | Definition of Complex Tangent Function | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {e^{i z} - e^{-i z} } {i \paren {e^{i z} + e^{-i z} } }\) | Tangent Exponential Formulation: Formulation 2 | |||||||||||
\(\ds \) | \(=\) | \(\ds -i \paren {\dfrac {e^{i z} - e^{-i z} } {e^{i z} + e^{-i z} } }\) | multiplying numerator and denominator by $-i$ |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 7$: Relationship between Exponential and Trigonometric Functions: $7.19$